Kamis, 20 Desember 2012

SUSPENSI



A.Pengertian
Suspensi adalah sediaan cair yang mengandung partikel padat tidak larut yang terdispersi dalam fase cair.
Suspensi terdiri dari beberapa jenis yaitu :
  1. Suspensi Oral adalah sediaan cair yang mengandung partikel padat yang terdispersi dalam pembawa cair dengan bahan pengaroma yang sesuai dan ditujukkan untuk penggunaan oral.
  2. Suspensi Topikal adalah sediaan cair mengandung partikel padat yang terdispersi dalam pembawa cair yang ditujukkan untuk penggunaan pada kulit.
  3. Suspensi Optalmik adalah sediaan cair steril yang mengandung partikel-partikel yang terdispersi dalam cairan pembawa yang ditujukkan untuk penggunaan pada mata.
  4. Suspensi tetes telinga adalah sediaan cair yang mengandung partikel-partikel halus yang ditujukkan untuk diteteskan pada telinga bagian luar.
  5. Suspensi untuk injeksi adalah sediaan berupa suspensi serbuk dalam medium cair yang sesuai dan tidak disuntikan secara intravena atau kedalam saluran spinal.
  6. Suspensi untuk injeksi terkontinyu adalah sediaan padat kering dengan bahan pembawa yang sesuai untuk membentuk larutan yang memenuhi semua persyaratan untuk suspensi steril setelah penambahan bahan pembawa yang sesuai.
B.Stabilitas Suspensi
Salah satu problem yang dihadapi dalam proses pembuatan suspensi adalah cara memperlambat penimbunan partikel serta menjaga homogenitas dari pertikel. Cara tersebut merupakan salah satu tindakan untuk menjaga stabilitas suspensi. Beberapa faktor yang mempengaruhi stabiltas suspensi adalah :
1.Ukuran Partikel
Ukuran partikel erat hubungannya dengan luas penampang partikel tersebut serta daya tekan keatas dari cairan suspensi itu. Hubungan antara ukuran partikel merupakan perbandingan terbalik dengan luas penampangnya. Sedangkan antar luas penampang dengan daya tekan keatas merupakan hubungan linier. Artinya semakin besar ukuran partikel maka semakin kecil luas penampangnya.
2.Kekentalan / Viskositas
Kekentalan suatu cairan mempengaruhi pula kecepatan aliran dari cairan tersebut, makin kental suatu cairan kecepatan alirannya makin turun (kecil). Hal ini dapat dibuktikan dengan hukum ” STOKES”

Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEihDLNhU75zWVMbH-6BZLefO8O6m8bg2F5jSPceP8257Zv9f5CLW_ZEOBwCuZMyljDCftds5Gg076J6am8XbvvJkPHvDbdlmQ00pSLk5W7lpnfTsh-O8yiejgQ7qlG6n0npGaYyvJUcxrM/s200/Picture1.jpg
Ket :
V = Kecepatan Aliran
d = Diameter Dari Partikel
p = Berat Jenis Dari Partikel
p0 = Berat Jenis Cairan
g = Gravitasi
ŋ = Viskositas Cairan
3.Jumlah Partikel / Konsentrasi
Apabila didalam suatu ruangan berisi partikel dalam jumlah besar, maka partikel tersebut akan susah melakukan gerakan yang bebas karena sering terjadi benturan antara partikel tersebut.
Benturan itu akan menyebabkan terbentuknya endapan dari zat tersebut, oleh karena itu makin besar konsentrasi partikel, makin besar kemungkinan terjadinya endapan partikel dalam waktu yang singkat.
4.Sifat / Muatan Partikel
Dalam suatu suspensi kemungkinan besar terdiri dari beberapa macam campuran bahan yang sifatnya tidak terlalu sama. Dengan demikian ada kemungkinan terjadi interaksi antar bahan tersebut yang menghasilkan bahan yang sukar larut dalam cairan tersebut. Karena sifat bahan tersebut sudah merupakan sifat alami, maka kita tidak dapat mempengruhi.
Ukuran partikel dapat diperkecil dengan menggunakan pertolongan mixer, homogeniser, colloid mill dan mortir. Sedangkan viskositas fase eksternal dapat dinaikkan dengan penambahan zat pengental yang dapat larut kedalam cairan tersebut. Bahan-bahan pengental ini sering disebut sebagai suspending agent (bahan pensuspensi), umumnya besifat mudah berkembang dalam air (hidrokoloid).
Bahan pensuspensi atau suspending agent dapat dikelompokan menjadi dua, yaitu :
1. Bahan pensuspensi dari alam.
Bahan pensuspensi dari alam yang biasanya digunakan adalah jenis gom / hidrokoloid. Gom dapat larut atau mengembang atau mengikat air sehingga campuran tersebut membentuk mucilago atau lendir. Dengan terbentuknya mucilago maka viskositas cairan tersebut bertambah dan akan menambah stabilitas suspensi. Kekentalan mucilago sangat dipengaruhi oleh panas, PH, dan proses fermentasi bakteri.
a. Termasuk golongan gom :
Contonya : Acasia ( Pulvis gummi arabici), Chondrus, Tragacanth , Algin
b. Golongan bukan gom :
Contohnya : Bentonit, Hectorit dan Veegum.
2. bahan pensuspensi sintesis
a. Derivat Selulosa
Contohnya : Metil selulosa, karboksi metil selulosa (CMC), hidroksi metil selulosa.
b.Golongan organk polimer
Contohnya : Carbaphol 934.
C. Cara Mengerjakan Obat Dalam Suspensi
1. Metode pembuatan suspensi :
Suspensi dapat dibuat dengan cara :
  • Metode Dispersi
  • Metode Precipitasi
2. Sistem pembentukan suspensi :
  • Sistem flokulasi
  • Sistem deflokulasi
Secara umum sifat-sifat dari partikel flokulasi dan deflokulasi adalah :
a. Deflokulasi
  • Partikel suspensi dalam keadaan terpisah satu dengan yang lain.
  • Sedimentasi yang terjadi lambat masing-masing patikel mengendap terpisah dan ukuran partikel adalah minimal.
  • Sediaan terbentuk lambat.
  • Diakhir sedimen akan membentuk cake yang keras dan sukar terdispersi lagi.
b.Flokulasi
  • Partikel merupakan agregat yang basa
  • Sedimentasi terjadi begitu cepat
  • Sedimen tidak membentuk cake yang keras dan padat dan mudah terdispersi kembali seperti semula.
D.Formulasi suspensi
Membuat suspensi stabil secara fisis ada 2 kategori :
  • Pada penggunaan ”Structured Vehicle” untuk menjaga partikel deflokulasi dalam suspensi Structured Vehicle, adalah larutan hidrokoloid seperti tilose, gom, bentonit, dan lain-lain.
  • Penggunaan prinsip-prinsip flokulasi untuk membentuk flok, meskipun terjadi cepat pengendapan, tetapi dengan pengocokan ringan mudah disuspensikan kembali.
Pembuatan suspensi sistem flokulasi ialah :
1. Partikel diberi zat pembasah dan dispersi medium.
2. Lalu ditambah zat pemflokulasi, biasanya berupa larutan elektrolit, surfaktan atau polimer.
3. Diperoleh suspensi flokulasi sebagai produk akhir.
4. Apabila dikehendaki agar flok yang terjadi tidak cepat mengendap, maka ditambah Structured Vehicle.
5. Produk akhir yang diperoleh ialah suspensi flokulasi dalam Structured Vehicle.
E.Penilaian Stabilitas Suspensi
1. Volume sedimentasi
Adalah Suatu rasio dari volume sedimentasi akhir (Vu) terhadap volume mula mula dari suspensi (Vo) sebelum mengendap.
Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiRun6tdersNl1sJdZuTn0p5YKDZw3cQyeTAngvUQ44Nxsk-dXXfXWMTlfRusCTW-nlOvAlTI3vNpQqAHSM94C9qwj4n-XoLvv_XGEr_vwSkWdgVn37TKDP_oBb6hiXUgYJ2vNbK07KP9Q/s200/Picture2.jpg
2. Derajat flokulasi.
Adalah Suatu rasio volume sedimentasi akhir dari suspensi flokulasi (Vu) terhadap volume sedimentasi akhir suspensi deflokulasi (Voc).
Description: https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEj5FccacDUnUY9TuOYuNG2AcXVCKM7YXJoGZQUQTg2Xr-KqXw8WVT_r1nT84kSXcQrHwNHG9lAPpdDf3e7DEOBjBdS04seQaQ9PHjkKRAk8ueOfyUfl7HhEEzXqPcd9SdRbh-w2hv4r-dY/s200/Picture3.jpg
3.Metode reologi
Berhubungan dengan faktor sedimentasi dan redispersibilitas, membantu menemukan perilaku pengendapan, mengatur vehicle dan susunan partikel untuk tujuan perbandingan.
4.Perubahan ukuran partikel
Digunakan cara Freeze-thaw cycling yaitu temperatur diturunkan sampai titik beku, lalu dinaikkan sampai mencair kembali. Dengan cara ini dapat dilihat pertumbuhan kristal, yang pokok menjaga tidak terjadi perubahan ukuran partikel dan sifat kristal.
Sumber :
1. Soetopo. Seno, dkk. 2001. Teori Ilmu Resep. Jakarta
2. Anief. Moh. 2000. Farmasetika. Gajah Mada University Press : Yogyakarta
3. Lahman. L, dkk.1994. Teori dan Praktek Farmasi Industri. Edisi III. UI Press : Jakarta








A.Suspensiones ( Suspensi )

Suspensi adalah sediaan yang mengandung bahan obat padat dalam bentuk halus dan tidak larut, terdispersi dalam cairan pembawa. Zat yang terdispersi harus halus, tidak boleh cepat mengendap, dan bila digojog perlahan– lahan, endapan harus terdispersi kembali. Dapat di tambahkan zat tambahan untuk menjamin stabilitas suspensi tetapi kekentalan suspensi harus menjamin sediaan mudah di gojog dan di tuang .

Dalam pembuatan suspensi harus diperhatikan beberapa faktor anatara lain sifat partikel terdispersi ( derajat pembasahan partikel ), Zat pembasah, Medium pendispersi serta komponen – komponen formulasi seperti pewarna, pengaroma, pemberi rasa dan pengawet yang digunakan. Suspensi harus dikemas dalam wadah yang memadai di atas cairan sehigga dapat dikocok dan mudah dituang. Pada etiket harus tertera “Kocok dahulu dan di simpan dalam wadah tertutup baik dan disimpan di tempat yang sejuk “.

B. Keuntugan sediaan suspensi antara lain sebagai berikut :

a. Bahan obat tidak larut dapat bekerja sebagai depo, yang dapat memperlambat terlepasnya obat .

b. Beberapa bahan obat tidak stabil jika tersedia dalam bentuk larutan.

c. Obat dalam sediaan suspensi rasanya lebih enak dibandingkan dalam larutan, karena rasa obat yang tergantung kelarutannya.

Kerugian bentuk suspensi antara lain sebagai berikut :

a. Rasa obat dalam larutan lebih jelas.

b. Tidak praktis bila dibandingkan dalam bentuk sediaan lain, misalnya pulveres, tablet, dan kapsul.

c. Rentan terhadap degradasi dan kemungkinan terjadinya reaksi kimia antar kandungan dalam larutan di mana terdapat air sebagai katalisator .

C. Pembasahan Partikel

Dalam pembuatan suspensi, pembasahan partikel dari serbuk yang tidak larut di dalam cairan pembawa adalah langkah yang penting. kadang – kadang adalah sukar mendispersi serbuk, karena adanya udara, lemak dan lain – lain kontaminan .

Serbuk tadi tidak dapat segera dibasahi, walaupun BJ – nya besar mereka mengambang pada permukaan cairan.

Pada serbuk yang halus mudah kemasukan udara dan sukar dibasahi meskipun ditekan di bawah permukaan cairan.

Serbuk dengan sudut kontak ± 90 ْ akan menghasilkan serbuk yang terapung keluar dari cairan. Sedangkan serbuk yang mengambang di bawah cairan mempunyai sudut kontak yang lebih kecil dan bila tenggelam, menunjukkkan tidak adanya sudut kontak .

Serbuk yang sulit dibasahi air , disebut hidrofob , seperti sulfur , carbo adsorben, Magnesii Stearat dan serbuk yang mudah dibasahi air disebut hidropofil seperti toluen , Zincy Oxydi , Magnesii Carbonas .

Dalam pembuatan suspensi penggunaan surfaktan ( wetting agent ) adalah sangat berguna dalam penurunan tegangan antar muka akan menurunkan sudut kontak , pembasahan akan dipermudah.

Gliserin dapat berguna di dalam penggerusan zat yang tidak larut karena akan memindahkan udara diantara partikel – partikel hingga bila ditambahkan air dapat menembus dan membasahi partikel karena lapisan gliserin pada permukaan partikel mudah campur dengan air. Maka itu pendispersian partikel dilakukan dengan menggerus dulu partikel dengan gliserin, propilenglikol, koloid gom baru diencerkan dengan air. ( IMO , 152 )

D. Pada pembuatan Suspensi di kenal 2 macam sistem , yaitu :

a. Sistem Deflokulasi

b. Sistem Flokulasi

Dalam system flokulasi, partikel terflokulasi adalah terikat lemah, cepat mengendap dan mudah tersuspensi kembali dan tidak membentuk cake. Sedangkan pada system Deflokulasi, partikel terdeflokulasi mengendap perlahan – lahan dan akhirnya akan membentuk sendimen dan terjadi agregasi dan selanjutnya cake yang keras dan sukar tersuspensi kembali. ( Farmasetika , 163 )

Cara Pembuatan Suspensi

Suspensi dapat di buat dengan menggunakan 2 metode, yaitu :

1. Metode Dispersi

2. Metode Presipitasi ( Pengendapan ) , metode ini di bagi lagi menjadi 3 macam , yaitu :

· Presipitasi dengan pelarut organik

· Presipitasi dengan perubahan pH dari media

· Presipitasi dengan dokomposisi rangkap

1. Metode Dispersi

Serbuk yang terbagi halus, didispersi didalam cairan pembawa. Umumnya sebagai cairan pembawa adalah air. Dalam formulasi suspensi yang penting adalah partikel – partikel harus terdispersi betul di dalam air, mendispersi serbuk yang tidak larut dalam air, kadang – kadang sukar. Hal ini di sebabkan karena adanya udara, lemak dan lain – lain kontaminan pada permukaan serbuk . ( Farmasetika , 165 )

2. Metode Presipitasi

Dengan pelarut organik dilakukan dengan zat yang tidak larut dalam air,dilarutkan dulu dalam pelarut organik yang dapat dicampur dengan air, lalu ditambahkan air suling dengan kondisi tertentu. Pelarut organik yang digunakan adalah etanol, methanol, propilenglikol dan gliserin. Yang perlu diperhatikan dengan metode ini adalah control ukuran partikel, yaitu terjadinya bentuk polimorf atau hidrat dari kristal. ( Farmasetika , 165 )



METABOLISME PROTEIN


METABOLISME PROTEIN
A. PROTEIN
            Protein merupakan rangkaian asam amino dengan ikatan peptide. ¾ zat padat tubuh terdiri dari protein (otot, enzim, protein plasma, antibodi, hormon). Banyak protein terdiri ikatan komplek dengan fibril atau disebut protein fibrosa. Macam protein fibrosa: kolagen (tendon, kartilago, tulang); elastin (arteri); keratin (rambut, kuku); dan aktin-miosin.

1.       .Penguraian Protein Dalam Tubuh
      Asam amino yang dibuat dalam hati, maupun yang dihasilkan dari proses katabolisme protein dalam hati, dibawa oleh darah kedalam jaringan untuk digunakan.proses anabolik maupun katabolik juga terjadi dalam jaringan diluar hati.asam amino yang terdapat dalam darah berasal dari tiga sumber, yaitu absorbsi melalui dinding usus, hasil penguraian protein dalam sel dan hasil sintesis asam amino dalam sel. Banyaknya asam amino dalam darah tergantung keseimbangan antara pembentukan asam amino dan penggunaannya. Hati berfungsi sebagai pengatur konsentrasi asam amino dalam darah.
      Dalam tubuh kita, protein mengalami perubahan – perubahan tertentu dengan kecepatan yang berbeda untuk tiap protein. Protein dalam dara, hati dan organ tubuh lain mempunyai waktu paruh antara 2,5 sampai 10 hari. Protein yang terdapat pada jaringan otot mempunyai waktu paruh 120 hari. Rata-rata tiap hari 1,2 gram protein per  kilogram berat badan diubah menjadi senyawa lain. Ada tiga kemungkinan mekanisme perubahan protein, yaitu :
1)   Sel-sel mati, lalu komponennya mengalami proses penguraian atau katabolisme dan dibentuk sel – sel baru.
2)   Masing-masing protein mengalami proses penguraian dan terjadi sintesis protein baru, tanpa ada sel yang mati.
3)   Protein dikeluarkan dari dalam sel diganti dengan sintesis protein baru.
      Protein dalam makanan diperlukan untuk menyediakan asam amino yang akan digunakan untuk memproduksi senyawa nitrogen yang lain, untuk mengganti protein dalam jaringan yang mengalami proses penguraian dan untuk mengganti nitrogen yang telah dikeluarkan dari tubuh dalam bentuk urea. Ada beberapa asam amino yang dibutuhkan oleh tubuh, tetapi tidak dapat diproduksi oleh tubuh dalam jumlah yang memadai. Oleh karena itu asam amino tersebut,yang dinamakan asam essensial yang dibutuhkan oleh manusia.
      Kebutuhan akan asam amino esensial tersebut bagi anak-anak relatiflebih besar daripada orang dewasa. Kebutuhan protein yang disarankan ialah 1 sampai 1,5 gram per kilogram berat badan per hari.
2.        Asam Amino Dalam Darah
      Jumlah asam amino dalam darah tergantung dari jumlah yang diterima dan jumlah yang digunakan. Pada proses pencernaan makanan, protein diubah menjadi asam amino oleh beberapa reaksi hidrolisis serta enzim – enzim yang bersangkutan. Enzim-enzim yang bekerja pada proses hidrolisis protein antara lain ialah pepsin, tripsin, kimotripsin, karboksi peptidase, amino peptidase, tripeptidase dan dipeptidase.
      Setelah protein diubah menjadi asam-asam amino, maka dengan proses absorpsi melalui dinding usus, asam amino tersebut sampai kedalam pembuluh darah. Proses absorpsi ini ialah proses transpor aktif yang memerlukan energi. Asam-asam amino dikarboksilat atau asam diamino diabsorbsi lebih lambat daripada asam amino netral.
      Dalam keadaan berpuasa, konsentrasi asam amino dalam darah biasanya sekitar 3,5 sampai 5 mg per 100 ml darah. Segera setelah makan makanan sumber protein, konsentrasi asam amino dalam darah akan meningkat sekitar 5 mg sampai 10 mg per 100 mg darah. Perpindahan asam amino dari dalam darah  kedalam sel-sel jaringan juga proses tranpor aktif yang membutuhkan energi.

B. MACAM PROTEIN
Peptide                        : 2 – 10 asam amino
Polipeptide      : 10 – 100 asam amino
Protein             : > 100 asam amino
Glikoprotein    : gabungan glukose dengan protein
Lipoprotein     : gabungan lipid dan protein

3.      Reaksi Metabolisme Asam Amino
      Tahap awal pembentukan metabolisme asam amino, melibatkan pelepasan gugus amino, kemudian baru perubahan kerangka karbon pada molekul asam amino. Dua proses utama pelepasan gugus amino yaitu, transaminasi dan deaminasi.

Transaminasi
      Transaminasi ialah proses katabolisme asam amino yang melibatkan pemindahan gugus amino dari satu asam amino kepada asam amino lain. Dalam reaksi transaminasi ini gugus amino dari suatu asam amino dipindahkan kepada salah satu dari tiga senyawa keto, yaitu asam piruvat, a ketoglutarat atau oksaloasetat, sehingga senyawa keto ini diubah menjadi asam amino, sedangkan asam amino semula diubah menjadi asam keto. Ada dua enzim penting dalam reaksi transaminasi yaitu alanin transaminase dan glutamat transaminase yang bekerja sebagai katalis dalamreaksi berikut :
Description: http://rochem.files.wordpress.com/2012/01/picture1.png?w=812
      Pada reaksi ini tidak ada gugus amino yang hilang, karena gugus amino yang dilepaskan oleh asam amino diterima oleh asam keto. Alanin transaminase merupakan enzim yang mempunyai kekhasan terhadap asam piruvat-alanin. Glutamat transaminase merupakan enzim yang mempunyai kekhasan terhadap glutamat-ketoglutarat sebagai satu pasang substrak .
      Reaksi transaminasi terjadi didalam mitokondria maupun dalam cairan sitoplasma. Semua enzim transaminase tersebut dibantu oleh piridoksalfosfat sebagai koenzim. Telah diterangkan bahwa piridoksalfosfat tidak hanya merupakan koenzim pada reaksi transaminasi, tetapi juga pada reaksi-reaksi metabolisme yang lain.
   

  Deaminasi
            Deaminasi adalah proses pembuangan gugus amino dari asam amino. Reaksinya adalah sebagai berikut:
asam amino + NAD+ → asam keto + NH3
            NH3  merupakan racun bagi tubuh, tetapi tidak dapat dibuang oleh ginjal sehingga harus diubah dahulu jadi urea (di hati)  agar dapat dibuang oleh ginjal. Jika hati ada kelainan (sakit) menyebabkan proses perubahan NH3 menjadi urea terganggu sehingga terjadi penumpukan NH3 dalam darah hal ini dapat mengakibatkan uremia. NH3 bersifat racun dan dapat meracuni otak, hal ini disebut coma. Karena hati yang rusak maka disebut Koma hepatikum
Deaminasi maupun transaminasi merupakan proses perubahan protein menjadi zat yang dapat masuk kedalam siklus Krebs. Zat hasil deaminasi / transaminasi yang dapat masuk siklus Krebs adalah: alfa ketoglutarat, suksinil ko-A, fumarat, oksaloasetat, sitrat
Pembongkaran protein menjadi asam amino memerlukan bantuan dari enzim-enzim protease dan air untuk mengadakan proses hidrolisis pada ikatan-ikatan peptida. Hidrolisis ini juga dapat terjadi, jika protein dipanasi, diberi basa, atau diberi asam. Dengan cara demikian, kita dapat mengenal macam-macam asam amino yang tersusun di dalam suatu protein.
Namun, kita tidak dapat mengetahui urut-urutan susunannya ketika masih berbentuk molekul protein yang utuh. Di samping itu, asam amino dapat dikelompokkan menjadi asam amino esensial dan asam amino nonesensial.


Asam amino esensial
Asam amino esensial atau asam amino utama adalah asam amino yang sangat diperlukan oleh tubuh dan harus didatangkan dari luar tubuh manusia karena sel-sel tubuh manusia tidak dapat mensintesis sendiri. Asam amino esensial hanya dapat disintesis oleh sel-sel tumbuhan. Contoh asam amino esensial, yaitu leusin, lisin, histidin, arginin, valin, treonin, fenilalanin, triptofan, isoleusin, dan metionin.
Asam amino nonesensial
Asam amino nonesensial adalah asam amino yang dapat disintesis sendiri oleh tubuh manusia.  Contohnya: tirosin, glisin, alanin, dan prolin.
4.       Pembentukan Asetil Koenzim A
      Asetil koenzim A merupakan senyawa penghubung antara metabolisme asam amino dengan siklus asam sitrat. ada dua jalur metabolic yang menuju kepada pembentukan asetil koenzim A, yaitu melalui asam piruvat dan melalui asam asetoasetat
      Asam-asam amino yang menjalani jalur metabolic melalui asam piruvat ialah alanin, sistein, serin dan treonin. alanin menghasilkan asam piruvat dengan langsung pada reaksi transaminasi dengan asam a ketoglutarat. Treonin diubah menjadi gllisin dan asetaldehida oleh enzim treonin aldolase. glisin kemudian diubah menjadi asetil koenzim A melalui pembentukan serin dengan jalan penambahan satu atom karbon, seperti metal, hidroksi metal dan formil. koenzim yang bekerja disini ialah tetrahidrofolat.
5.         Siklus Urea
      Hans Krebs dan Kurt Heneseleit pada tahun 1932 mengemukakan serangkaian reaksi kimia tentang pembentukan urea. Mereka berpendapat bahwa urea terbentuk dari ammonia dan karbondioksidamelalui serangkaian reaksi kimia yang berupa siklus, yang mereka namakan siklus urea. Pembentukan urea ini terutama berlangsung didalam hati. Urea adalah suatu senyawa yang mudah larut dalam air, bersifat netral, terdapat dalam urine yang dikeluarkan dari dalam tubuh.
      Dalam reaksi pembentukan karbamil fosfat ini, satu mol ammonia bereaksi  dengan satu mol karbondioksida dengan bantuan enzim karbamilfosfat sintetase. Reaksi ini membutuhkan energi, karenanya reaksi ini melibatkan dua mol ATP yang diubah menjadi ADP. Disamping itu sebagai kofaktor dibutuhkan mg++ dan N-asetil-glutamat.
      Karbamil fosfat yang terbentuk bereaksi dengan ornitin membentuk sitrulin. Dalam reaksi ini bagian karbomil bergabung dengan ornitin dan memisahkan gugus fosfat. Sebagai katalis pada pembentukan sitrulin adalah ornitin transkarbamilase yang terdapat pada bagian mitokondria sel hati.
      Selanjutnya sitrulin bereaksi dengan asam aspartat membentuk asam argininosuksinat. Reaksi ini berlangsung dengan bantuan enzim argininosuksinat sintetase. Dalam reaksi tersebut ATP merupakan sumber energi dengan jalan melepaskan gugus fosfat dan berubah menjadi AMP.
      Dalam reaksi ini asam argininosuksinat diuraikan menjadi arginin dan asam fumarat. Reaksi ini berlangsung dengan bantuan enzim argininosuksinase, suatu enzim yang terdapat dalam hati dan ginjal. Reaksi terakhir ini melengkapi tahap reaksi pada siklus urea. Dalam reaksi ini arginin diuraikan menjadi urea dan ornitin. Enzim yang bekerja sebagai katalis dalam reaksi penguraian ini ialah arginase yang terdapat dalam hati. Ornitin yang terbentuk dalam reaksi hidrolisis ini bereaksi dengan karbamilfosfat untuk membentuk sitrulin.

6.       Biosintesis Protein
      Biosintesis protein  yang terjadi dalam sel merupakan reaksi kimia yang kompleks dan melibatkan beberapa senyawa penting, terutama DNA dan RNA.molekuk DNA merupakan rantai polinukleutida yang mempunyai beberapa jenis basapurin dan piramidin, dan berbentuk heliks ganda.
      Dengan demikian akan terjadi heliks gandayang baru dan proses terbentunya molekul DNA baru ini disebut replikasi, urutan basa purin dan piramidin pada molekul DNA menentukan urutan asam amino dalam pembentukan  protein. Peran dari DNA itu sendri sebagai pembawa informasi genetic atau sifat-sifat keturunan pada seseorang . dua tahap pembentukan protein:
1)   Tahap pertama disebut transkripsi, yaitu pembentukan molekul RNA sesuai pesan yang diberikan oleh DNA.
2)   Tahap kedua disebut translasi, yaitu molekul RNA menerjemahkan informasi genetika kedalam proses pembentukan protein.
      Biosintesis protein terjadi dalam ribososm, yaitu suatu partikel yang terdapat dalam sitoplasma r RNA bersama dengan protein merupakan komponen yang membentuk ribosom dalam sel, perananya dalam dalam sintesis protein yang berlangsung dalam ribosom belum diketahui.
      m RNA diproduksi dalam inti sel dan merupakan RNA yang paling sedikit jumlahnya. kode genetika yang berupa urutan basa pada rantai nukleutida dalam molekul DNA. tiap tiga buah basa yang berurutan disebut kodon, sebagai contoh AUG adalah kodon yang terbentuk dalam dari kombinasi adenin-urasil-guanin, GUG adalah kodon yang terbentuk dari kombinasi guanin-urasil-guanin. kodon yang menunjuk asam amino  yang sama disebut sinonim, misalnya CAU dan CAC adalah sinonim untuk histidin. perbedaan antara sinonim tersebut pada umumnya adalah basa pada kedudukanketiga misalnya GUU,GUA,GUC,GUG..
      bagian molekut t RNA yang penting dalam biosintesis protein ialah lengan asam amino yang mempunyai fungsi mengikat molekul asam amino tertentu dalam lipatan anti kodon. lipatan anti kodon mempunyai fungsi menemukan kodon yang menjadi pasangannya dalam m RNA yang tedapat dalam ribosom. pada prosese biosintesis protein, tiap molekuln t RNA membawa satu molekul asam amino masuk kedalam ribosom. pembentukkan ikatan asam amino dengan t Rna ini berlangsung dengan bantuan enzim amino asli t RNA sintetase dan ATP melalui dua tahap reaksi:
Asam aminon dengan enzim dan AMP membentuk kompleks aminosil-AMP-enzim.
reaksi antara kompleks aminoasil-AMP-enzim dengan t RNA
proses biosintesis akan berhenti apabila pada m RNA terdapat kodon UAA,UAG,UGA. karena dalam sel normal tidak terdapat t RNA yang mempunyai antikodon komplementer.


v  Fungsi protein bagi tubuh sebagai berikut:
1. Membangun sel-sel yang rusak.
2. Sumber energi.
3. Pengatur asam basa darah.
4. Keseimbangan cairan tubuh.
5. Pembentuk antibodi.
Singkatan Asam Amino
Arg, His, Gln, Pro       : Arginin, Histidin, Glutamin, Prolin
Ile, Met, Val                : Isoleusin, Metionin, Valin
Tyr, Phe                       : Tyrosin, Phenilalanin karboksikinase
Ala, Cys, Gly              : Alanin, Cystein, Glysin
Hyp, Ser, Thr               : Hydroksiprolin, Serin, Threonin
Leu, Lys, Phe, Trp, Tyr: Leusin, Lysin, Phenilalanin, Triptofan, Tyrosin
b. Oksidasi asam amino
            Pada umumnya, degradasi asam amino dimulai dengan pelepasan gugus amino sehingga  menghasilkan kerangka C yang diubah menjadi senyawa antara metabolisme utama tubuh.  Metabolisme asam amino pada umumnya terjadi di hati. Kelebihan di luar liver dibawa ke hati diekskresikan. Ammonia digunakan kembali untuk proses biosintesis. diekskresi secara langsung atau diubah terlebih dahulu menjadi asam urat / urea.
v    Vertebrata terestrial à urea à ureotelic
v  Burung & reptil à asam urat à uricotelic
v  Binatang di air à ammoniaà ammonotelic

Hepatocyte / cytosol sel liver

Ditranspor ke mitokondria
Proses transaminasi : proses yang mana suatu gugus amino dipindahkan, biasanya dari Glutamat menjadi  suatu α – keto acid dan reaksi ini menghasilkan asam Amino yg terkait plus α-ketoglutarat. Reaksi transaminasi dikatalis oleh enzim transaminase (aminotransferase)
Reaksi transaminasi membutuhkan koenzim piridoxal phosphat (PLP) yang berasal dari vitamin B6. Aminotranferase à mengkatalisis
Melibatkan α – KG à Glu
v  Glutamate à α – KG
v  Aspartate à OAA
v  Alanine à pyruvate
Strategi degradasi asam amino adalah mengubah kerangka C nya menjadi senyawa intermediete dari metabolisme primer yang kemudian dpt diubah menjadi glukosa atau dioksidasi oleh TCA
Kerangka karbon à menjadi 7 senyawa :
α –KG
Suksinil Ko A
fumarat

asetil Ko A
Asetoasetil Ko A

OAA
Piruvat

Ketogenik

Glukogenik

Leusin
Lysine

Ile, Phe, Trp, Tyr

The rest of A.A

Degradasi asam amino berlanjut dengan pelepasan gugus amino yang kemudian akan diekskresikan.
§  Di dalam mitokondria terjadi reaksi deaminasi oxidative yang dikatalisis oleh L-glutamate dehydrogenase (enzim terdapat dalam matrik mitokondria)
§  Reaksi kombinasi dari aminotransferase dan glutamate Dehidrogenase disebut dengan trandeaminasi
§  Glutamat Dehidrogenase menjadi enzim allosterik komplek.
v  Positive modulator à ADP
v  Negative modulator à GTP à TCA
Transport Ammonia Ke Hati
v  Ammonia bersifat toksik bagi jaringan hewan.
v  Pengubahan ammonia menjadi urea terjadi di dalam hati
v  Ammonia menjadi menjadi glutamin dan akan di transport ke hati
v  Glutamin
tidak toksik, bersifat netral dan dapat lewat melalui sel membran secara langsung.
merupakan bentuk utama untuk transpor ammonia sehingga terdapat di dalam darah lebih tinggi dari asam amino yang lain
juga berfungsi untuk sumber gugus amino pada berbagai reaksi biosintesis.
c. Biosintesis asam amino
d. Biosintesis protein
            Penyusunan protein yang merupakan bagian dari protoplasma berbentuk suatu rantai panjang, sedangkan molekul protein-protein yang lain mirip bola. Sintesis protein adalah proses pembentukan protein dari monomer peptida yang diatur susunannya oleh kode genetik. Sintesis protein dimulai dari anak inti sel, sitoplasma dan ribosom. Sintesis protein terdiri dari 3 tahapan besar yaitu:
a)      Transkripsi.
            DNA membuka menjadi 2 rantai terpisah. Karena mRNA berantai tunggal, maka salah satu rantai DNA ditranskripsi (dicopy). Rantai yang ditranskripsi dinamakan DNA sense atau template dan kode genetik yang dikode disebut kodogen. Sedangkan yang tidak ditranskripsi disebut DNA antisense/komplementer. RNA Polimerase membuka pilinan rantai DNA dan memasukkan nukleotida-nukleotida untuk berpasangan dengan DNA sense sehingga terbentuklah rantai mRNA.
b)      Translasi
            Translasi adalah proses penerjemahan urutan nukleotida atau kodon yang ada pada molekul mRNA menjadi rangkaian asam-asam amino yang menyusun suatu polipeptida atau protein. Transkripsi dan translasi merupakan dua proses utama yang menghubungkan gen ke protein. Translasi hanya terjadi pada molekul mRNA, sedangkan rRNA dan tRNA tidak ditranslasi. Molekul mRNA yang merupakan salinan urutan DNA menyusun suatu gen dalam bentuk kerangka baca terbuka. mRNA membawa informasi urutan asam amino.
Tempat translasi ini ialah ribosom, partikel kompleks yang memfasilitasi perangkaian secara teratur asam amino menjadi rantai polipeptida.  Asam amino yang akan dirangkaikan dengan asam amino lainnya dibawa oleh tRNA. Setiap asam amino akan dibawa oleh tRNA yang spesifik ke dalam kompleks mRNA-ribosom
            Proses translasi berupa penerjemahan kodon atau urutan nukleotida yang terdiri atas tiga nukleotida berurutan yang menyandi suatu asam amino tertentu. Kodon pada mRNA akan berpasangan dengan antikodon yang ada pada tRNA. Setiap tRNA mempunyai antikodon yang spesifik. Tiga nukleotida di anti kodon tRNA saling berpasangan dengan tiga nukleotida dalam kodon mRNA menyandi asam amino tertentu. Translasi menjadi tiga tahap (sama seperti pada transkripsi) yaitu inisiasielongasi,dan terminasi. Semua tahapan ini memerlukan faktor-faktor protein yang membantu mRNA, tRNA, dan ribosom selama proses translasi. Inisiasi dan elongasi rantai polipeptida juga membutuhkan sejumlah energi. Energi ini disediakan oleh GTP (guanosin triphosphat), suatu molekul yang mirip dengan ATP.
1.  Inisiasi
            Tahap inisiasi dari translasi terjadi dengan adanya mRNA, sebuah tRNA yang memuat asam amino pertama dari polipeptida, dan dua sub unit ribosom. Dalam kompleks inisisasi, ribosom “membaca” kodon pada mRNA. Pembacaan dilakukan untuk setiap 3 urutan basa hingga selesai seluruhnya. Sebagai catatan ribosom yang datang untuk membaca kodon biasanya tidak hanya satu, melainkan beberapa ribosom yang dikenal sebagai polisom membentuk rangkaian mirip tusuk sate, di mana tusuknya adalah “mRNA” dan daging adalah “ribosomnya”. Dengan demikian, proses pembacaan kodon dapat berlangsung secara berurutan. Ketika kodon I terbaca ribosom (misal kodonnya AUG), tRNA yang membawa antikodon UAC dan asam amino metionin datang. tRNA masuk ke celah ribosom.
Ribosom di sini berfungsi untuk memudahkan perlekatan yang spesifik antara antikodon tRNA dengan kodon mRNA selama sintesis protein. Sub unit ribosom dibangun oleh protein-protein dan molekul-molekul RNA ribosomal.
2.  Elongasi
             tahap elongasi dari translasi, asam amino-asam amino ditambahkan satu per satu diawali dari asam amino pertama (metionin). Ribosom akan terus bergerak dan membaca kodon-kodon di sepanjang mRNA. Masing-masing kodon akan diterjemahkan oleh tRNA yang membawa asam amino yang dikode oleh pasangan komplemen antikodon tRNA tersebut. Di dalam ribosom, metionin yang pertama kali masuk dirangkaikan dengan asam amino yang di sampingnya membentuk dipeptida.
            Ribosom terus bergeser, membaca kodon berikutnya. Asam amino berikutnya dirangkaikan dengan dipeptida yang telah terbentuk sehingga membentuk tripeptida. Demikian seterusnya proses pembacaan kode genetika itu berlangsung di dalam ribobom, yang diterjemahkan ke dalam bentuk asam amino guna dirangkai menjadi polipeptida.
Kodon mRNA pada ribosom membentuk ikatan hidrogen dengan antikodon molekul tRNA yang baru masuk yang membawa asam amino yang tepat. Molekul mRNA yang telah melepaskan asam amino akan kembali ke sitoplasma untuk mengulangi kembali pengangkutan asam amino. Molekul rRNA dari sub unit ribosom besar berfungsi sebagai enzim, yaitu mengkatalisis pembentukan ikatan peptida yang menggabungkan polipeptida yang memanjang ke asam amino yang baru tiba.
3.  Terminasi
            Tahap akhir translasi adalah terminasi. Elongasi berlanjut hingga ribosom mencapai kodon stop. Triplet basa kodon stop adalah UAA, UAG, dan UGA. Kodon stop tidak mengkode suatu asam amino melainkan bertindak  sebagai sinyal untuk menghentikan translasi. Polipeptida yang dibentuk kemudian “diproses” menjadi protein.